(c) 96 m

(c) 20 cm

(c) 69 cm

(c) 9 8cm

(c) 21

(c) 75

(c) 64

In the $\triangle ABC$, D and E are points on side AB and AC respectively such that DE || BC. If AE = 2 cm, AD

ABCD is a trapezium with AD || BC and AD = 4cm. If the diagonals AC and BD intersect each other at

(d) none of these

(d) 4.5

(d) 3 cm

(d) 12

(d) 14

(d) 955

(d) none of these

end of the shadow.

(b) 88 m

(b) 15 cm

(b) 92 cm

(b) 77cm

In ABC, DE \parallel AB. If CD = 3 cm, EC = 4 cm, BE = 6 cm, then DA is equal to

The nth term of an A.P. is given by $a_n = 3 + 4n$. The common difference is

The 10^{th} term from the end of the A.P. -5, -10, -15,..., -1000 is :

If $\tan A = 3/4$, find the value of $\csc A$.

= 3 cm and BD = 4.5 cm, then CE equals

O such that AO/OC = DO/OB = 1/2, then BC =

The common difference of AP 2,4,6.....is

(b) 24

(b) - 955

(a) 54 m

(a) 10 cm

(a) 12 cm

(a) 36cm

(a) - 256

 $\sin 30^{0} =$

Q.7

Q.8

Q.9

0.10

Q.11

Q.12

Q.13

Q.14

	(a)1	(b) 2	(c) 5	(d) $\frac{1}{2}$		
Q.15			enth term is given by $a_n = 3n + (c) 284$	- 4 (d) 287		
Q.16	(a) 282 (b) 235 (c) 284 (d) 287 $\tan 45^{0} + \cot 45^{0}$ equals to					
	(a) 1	(b) 2	(c) 3	(d) $\overline{12}$		
Q.17	HCF of smallest prime number and smallest composite number is					

Q.18 If
$$4 \tan \theta = 3$$
, then the value of $\frac{4\sin\theta - \cos\theta}{4\sin\theta + \cos\theta}$ is

(a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{1}{6}$

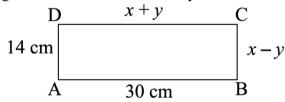
DIRECTION: In the question number 19 and 20, a statement of **Assertion (A)** is followed by a statement of Reason (R).

(d) 4

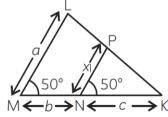
Choose the correct option

- Q.19 **Statement A (Assertion):** The number 6ⁿ never end with digit 0 for any natural number n... **Statement R(Reason):** The number 9ⁿ never end with digit 0 for any natural number n.
- **Statement A (Assertion):** The value of y is 6, for which the distance between the points Q.20 P(2, -3) and Q(10, y) is 10.

Statement R(Reason): Distance between two given


points A
$$(x_1, y_1)$$
 and B (x_2, y_2) is given by AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

- Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
- Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of (b) assertion (A)
- (c) Assertion (A) is true but reason (R) is false.
- Assertion (A) is false but reason (R) is true. (d)


SECTION - B

Questions 21 to 25 carry 2 marks each

Q.21 In figure, ABCD is a rectangle. Find the values of x and y.

In the given figure, find the value of x in terms of a, b and c.

- Q.23 Find the LCM and HCF of 6, 72, 120 using the prime factorization method.
- Q.24 Find the point on y axis which is equidistant from (2, 5) and (3, 9).

Find the point on x- axis which is equidistant from (1, -5) and (-2, 3)

Q.25 Find A and B, if
$$\sin (A + 2B) = \sqrt{\frac{3}{2}}$$
 and $\cos (A + B) = \frac{1}{2}$.

If $(1 + \cos A) (1 - \cos A) = \frac{3}{4}$, find the value of tan A.

SECTION - C

Questions 26 to 31 carry 3 marks each.

- Q.26 Prove that $\sqrt{2}$ is and irrational number.
- Q.27 Find the zeroes of the quadratic polynomial $x^2 5x + 6$ and verify the relationship between the zeroes and the coefficients of the polynomial.
- Q.28 A part of monthly hostel charges in a college is fixed and the remaining depends on the number of days one has taken food in the mess. When a student 'A' takes food for 22 days, he has to pay Rs. 1380 as hostel charges; whereas a student 'B', who takes food for 28 days, pays Rs. 1680 as hostel charges. Find the fixed charges and the cost of food per day.

OR

The ratio of income of two persons is 9:7 and the ratio of their expenditure is 4:3, if each of them manage to save Rs. 2000/month. Find their monthly incomes.

- Q.29 Prove that: $\frac{\sin\theta \cos\theta + 1}{\sin\theta + \cos\theta 1} = \sec\theta + \tan\theta$
- Q.30 Find two numbers whose sum is 27and product is 182
- Q.31 Find two consecutive positive integers sum of whose squares is 365.

SECTION - D

Questions 32 to 35 carry 5 marks each.

Q.32 From the top of a 7m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45° . Determine the height of the tower.

OR

The shadow of a tower standing on a level ground is found to be 40m longer when the sun"s altitude is 30^{0} than when it is 60^{0} . **Find the of the tower.**

- Q.33 Prove that if a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio.
- Q.34 Find the sum of integers between 1200 and 1500 are divisible by 4.

OR

If the 9th term of an A.P. is zero, then show that its 29th term is double of its 19th term.

Q.35 Solve the linear equation graphically 3x + y + 4 = 0; 3x - y + 2 = 0

<u>SECTION – E(Case Study Based Questions)</u>

Questions 36 to 38 carry 4 marks each.

Q.36 The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms.

- 1. In the standard form of quadratic polynomial, $ax^2 + bx + c$, a, b and c are
 - (a) All are Polynomials.

- (b) All are rational numbers.
- (c) 'a' is a non zero real number and b and c are any Polynomials. (d) none of these
- 2. If the roots of the quadratic polynomial are equal, where the discriminant $D=b^2-4ac$, then
 - (a) D > 0
- (b) D < 0
- (c) $D \ge 0$
- (d) D = 0
- 3. If α and $1/\alpha$ are the zeroes of the quadratic polynomial $2x^2 x + 8k$, then k is
 - (a) 4
- (b) 1/4
- (c) -1/4
- (d) None of these

		(a) Intersects x-axi	s at two distinct points	s. (b)Touches	s x-axis at a point.			
	(c) Neither touches nor intersects x-axis.			(d)Either to	(d)Either touches or intersects x- axis.			
Q.37	To enhance the reading skills of grade X students, the school nominates you and two of your friends to							
	set up a class library. There are two sections- section A and section B of grade X. There are 32 students							
	in section A and 36 students in section B.				2+1+1			
	1.	What is the minimum number of books you will acquire for the class library, so that the						
		distributed equally among students of Section A or Section B?						
		OR						
		If the product of two positive integers is equal to the product of their HCF and LCM is true then,						
		find the HCF (32, 36) is						
	2.	•	d as a product of its pr	4				
		(a) $2^2.3^2$	(b) 2 .3.5	(c) $2^4,7$	(d) None of these			
				PR				
		$7\times11\times13\times15+15$	is a					
		(a) Prime number		(b) Composite n				
		(c) Neither prime r	•	(d) None of the				
Q.38	Your friend Ravi wants to participate in a 200m race. He can currently run that distance in 51 seconds							
	and with each day of practice it takes him 2 seconds less. He wants to do in 31 seconds : 1+2+1							
	1.	Which of the following terms are in AP for the given situation						
		(a) 51,53,55	(b) 51, 49, 47	(c) -51, -53, -	55 (d) 51, 55, 59			
	2.	What is the minimum number of days he needs to practice till his goal is achieved						
		(a) 10	(b) 12	(c) 188	(d) none of these			
	3.	If nth term of an A	P is given by $a_n = 2n$	+ 3 then common dif	ference of an AP is			
		(a) 2	(b) 3	(c) 5	(d) none of these			
		OR						
		The value of x, for which $2x$, $x+10$, $3x+2$ are three consecutive terms of an AP						
		(a) 61	(b) – 6	(c)18	(d) none of these			
			**	***				

The graph of $x^2+1=0$

4.